Problem 3

For the following series, write formulas for the sequences a_{n}, S_{n}, and R_{n}, and find the limits of the sequences as $n \rightarrow \infty$ (if the limits exist).

$$
1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16} \cdots
$$

Solution

$$
\begin{aligned}
a_{n} & =\frac{(-1)^{n}}{2^{n}} \\
S_{n} & =\sum_{i=0}^{n} \frac{(-1)^{i}}{2^{i}}=\sum_{i=0}^{n}\left(-\frac{1}{2}\right)^{i}=\frac{1-\left(-\frac{1}{2}\right)^{n+1}}{1-\left(-\frac{1}{2}\right)}=\frac{2}{3}+\frac{(-2)^{-n}}{3} \\
S & =\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty}\left[\frac{2}{3}+\frac{(-2)^{-n}}{3}\right]=\frac{2}{3} \\
R_{n} & =S-S_{n}=\frac{2}{3}-\left[\frac{2}{3}+\frac{(-2)^{-n}}{3}\right]=-\frac{(-2)^{-n}}{3} \\
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{2^{n}}=0 \\
\lim _{n \rightarrow \infty} R_{n} & =\lim _{n \rightarrow \infty}\left[-\frac{(-2)^{-n}}{3}\right]=0
\end{aligned}
$$

